

Indexing Text

and HTML Files

Solr, the Lucene

Search Server
A Lucid Imagination

Technical Tutorial

By Avi Rappoport

Search Tools Consulting

Indexing Text

and HTML Files with

, the Lucene

Search Server

Search Tools Consulting

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page ii

Abstract
Apache Solr is the popular, blazing fast open source enterprise search platform; it uses

Lucene as its core search engine. Solr’s major features include powerful full-text search, hit

highlighting, faceted search, dynamic clustering, database integration, and complex queries.

Solr is highly scalable, providing distributed search and index replication, and it powers the

search and navigation features of many of the world's largest internet sites. Lucid

Imagination’s LucidWorks Certified Distribution for Solr provides a fully open distribution

of Apache Solr, with key complements including a full Reference Guide, an installer, and

additional functions and utilities. All the core code and many new features are available, for

free, at the Lucid Imagination web site (www.lucidimagination.com/downloads).

In the past, examples available for learning Solr were for strictly-formatted XML and

database records. This new tutorial provides clear, step-by-step instructions for a more

common use case: how to index local text files, local HTML files, and remote HTML files. It

is intended for those who have already worked through the Solr Tutorial or equivalent.

Familiarity with HTML and a terminal command line are all that is required; no formal

experience with Java or other programming languages is needed. System Requirements for

this tutorial are those of the Startup Tutorial: UNIX, Cygwin (Unix on Windows), Mac OS X;

Java 1.5, disk space, permission to run applications, access to content.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page iii

Contents
Introduction ... 1

Part 1: Installing This Tutorial ... 1

Part 2: Solr Indexing with cURL .. 3

Using the cURL command to index Solr XML .. 3

Troubleshooting errors with cURL Solr updates ... 4

Viewing the first text file in Solr ... 5

Part 3: Using Solr to Index Plain Text Files ... 6

Invoking Solr Cell ... 6

Parameters for more fields ... 7

Part 4: Indexing All Text Files in a Directory.. 9

Shell script for indexing all text files .. 9

More robust methods of indexing files ... 9

Part 5: Indexing HTML Files .. 10

cURLSimplest HTML indexing ... 10

Storing more metadata from HTML ... 11

Storing body text in a viewable field .. 12

Part 6: Using Solr indexing for Remote HTML Files ... 12

Using cURL to download and index remote files ... 12

File streaming for indexing remote documents ... 13

Spidering tools ... 13

Conclusion and Additional Resources ... 14

About Lucid Imagination .. 15

About the Author .. 15

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 1

Introduction

Apache Solr is the popular, blazing fast open source enterprise search platform; it uses

Lucene as its core search engine. Solr’s major features include powerful full-text search, hit

highlighting, faceted search, dynamic clustering, database integration, and complex queries.

Solr is highly scalable, providing distributed search and index replication, and it powers the

search and navigation features of many of the world's largest internet sites1.

Today, the newly released version of Solr 1.4 includes a new module called Solr Cell that

can access many file formats including plain text, HTML, zip, OpenDocument, and Microsoft

Office formats (both old and new). Solr Cell is invokes the Apache Tika extraction toolkit,

another part of the Apache Lucene family, integrated in Solr). This tutorial provides a

simple introduction to this powerful file access functionality.

In this tutorial, we’ll walk you through the steps required for indexing readily accessible

sources with simple command-line tools for Solr, using content you are likely to have

access to: your own files, local discs, intranets, file servers, and web sites.

Part 1: Installing This Tutorial

As it turns out, the existing examples for in the default installation of the Solr Tutorial are

for indexing specific formats of XML and JDBC-interface databases. While those formats can

be easier for search engines to parse, many people learning Solr do not have access to such

content. This new tutorial provides clear, step-by-step instructions for a more common use

case: how to index local text files, local HTML files, and remote HTML files. It is intended for

those who have already worked through the Solr Tutorial or equivalent.

This tutorial will add more example entries, using Abraham Lincoln's Gettysburg Address

and the United Nations’ Universal Declaration of Human Rights as text files, and as HTML

files, and walk you through getting these document types indexed and searchable.

First, follow the instructions in the Solr Tutorial (from

http://lucidimagination.com/Downloads/LucidWorks-for-Solr or

http://lucene.apache.org/solr/tutorial.html) from installation to Querying Data (or

1 Lucene, is the Apache search library at the core of Solr, presents the interfaces through a collection of directly
callable Java libraries, offering fine-grained control of machine functions and independence from higher-level
protocols, and requiring development of a full java application. Most users building Lucene-based search
applications will find they can do so more quickly if they work with Solr, as it adds many of the capabilities needed
to turn a core search function into a full-fledged search application.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 2

beyond). When you are done, the Solr index file will have about 22 example entries, most of

them about technology gadgets.

Next, use a browser or ftp program to access the tutorial directory on the Lucid

Imagination web site (http://www.lucidimagination.com/download/thtutorial/). You

should find the following files:

lu-example-1.txt lu-example-4.txt lu-example-8.ht ml thtutorial.zip
lu-example-1.xml lu-example-5.txt post-txt.sh
lu-example-2.txt lu-example-6.html remote
lu-example-3.txt lu-example-7.html schema.xml

For your convenience, all of the files above are included in thtutorial.zip

(http://www.lucidimagination.com/download/thtutorial/thtutorial.zip). Move the zip file

to the Solr example directory, (which is probably in usr/apache-solr-1.4.0 or /LucidWorks),

and unzip it: this will create an example-text-html directory

Working Directory: example-text-html
This tutorial assumes that the working directory is

[Solr home]/examples/examples-text-html : you can check your location by using the

Unix command line utility pwd.

Setting the schema
Before starting, it's important to update the example schema file to work properly with text

and HTML files. The schema needs one extra field defined, so all words in the plain text

files, and HTML body words go into the default field for searching.

Make a backup by renaming the conf directory file from schema.xml to schema-bak.xml

% mv ../../lucidworks/solr/conf/schema.xml ../../lu cidworks/solr/conf/schema-
bak.xml

Then either copy the text-html version of the schema or edit the version that's there to

include the body text field.

• Either: copy the new one from the example-text-html directory into the conf

directory:

% cp schema.xml ../../lucidworks/solr/conf/schema.x ml

or (for apache installs)

% cp schema.xml ../solr/conf/schema.xml

• Or: edit the schema to add this field:

• Open the original schema.xml in your favorite text editor

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 3

• Go to line 469 (LucidWorks) or 450 (apache). This should be the Solr Cell section

with other HTML tags.

...
<field name="last_modified" type="date" indexed="tr ue" stored="true"/>
<field name="links" type="string" indexed="true" st ored="true"
multiValued="true"/>

• and add the code to create the body field:

<field name="body" type="text" indexed="true" store d="true" multiValued="true"/>

• Go to line 558 (LucidWorks) or 540 (Apache), and look for the copyfield section.

...
<copyField source="includes" dest="text"/>
<copyField source="manu" dest="manu_exact"/>

• Go to the end of the section, after field manu and add the line to copy the body field

content into the text field (default search field).

<copyField source="body" dest="text"/>

• Save and close the schema.xml file.

Restarting Solr
Solr will not use the new schema until you restart the search engine. If you haven't done

this before, follow these steps:

• Switch to the terminal window in which the Solr engine has been started

• Press ^c (control-c) to end this session: it should show you that Shutdown hook is

executing.

• (Apache) Type the command java -jar start.jar to start it again. This only works

from the example directory, not from the example-text-html directory.

• (LucidWorks) Start Solr by running the start script, or clicking on the system tray icon

Part 2: Solr Indexing with cURL

Plain text seems as though it should be the simplest, but there are a few steps to go

through. This tutorial will walk through the steps, using the Unix shell cURL command.

Using the cURL command to index Solr XML
The first step is communicating with Solr. The Solr Startup Tutorial shows how to use the

Java tool to index all the .xml files. This tutorial uses the cURL utility available in Unix,

within the command-line (terminal) shell.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 4

• Telling Solr to index is like sending a POST request from an HTML form, with

appropriate path name (by default /update) and parameters. cURL uses this process, on

the command-line. This example uses the test file lu-example-1.xml.

To start, be in the solr/example/example-text-html directory.

Then, instruct Solr to update (index) an XML file using cURL , and then finish the index

update with a commit command

 cURL 'http://localhost:8983/solr/update/' -H 'Cont ent-type:text/xml' --data-
binary "@lu-example-1.xml"

 cURL 'http://localhost:8983/solr/update/' -H "Cont ent-Type: text/xml" --data-
binary '<commit/>'

Successful calls have a response status of 0.

<xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
<int name=" status"> 0</int><int name="QTime">000</int></lst>
</response>

Troubleshooting errors with cURL Solr updates
If you have a cURL error, it's usually mis-matched double quotes or single quotes. If you see

one of the following, go back and try again.

 cURL: (26) failed creating formpost data
 cURL: (3) <url> malformed
Warning: Illegally formatted input field!
 cURL: option -F: is badly used here

Common errors numbers from the Solr server itself include 400 and 500. This means that

the POST was properly formatted but included parameters that Solr could not identify.

When that happens, go back to a previous command that did work, and start building the

new one up from there. These errors should not damage your Solr search engine or index.

<title>Error 400 </title>
</head>
<body><h2>HTTP ERROR: 400</h2><pre>Unexpected chara cter 's' (code 115) in
prolog; expected '<'
 at [row,col {unknown-source}]: [1,1]</pre>

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 5

or

<title>Error 500 </title>
</head>
<body><h2>HTTP ERROR: 500</h2>
<pre>org.apache.lucene.store.NoSuchDirectoryExcepti on: directory
'/Applications/LucidWorks/example/solr/data/index' does not exist

If you can't make this work, you may want to follow the instructions with the Solr Startup

Tutorial to create a new Solr directory and confirm using the Java indexing instructions for

the exampledocs XML files before continuing.

Viewing the first text file in Solr

Once you have successfully sent the XML file to Solr's update processor, go to your browser,

as in the Getting Started tutorial, and search your Solr index for "gettysburg"

http://localhost:8983/solr/select?q=gettysburg.

The result should be an XML document, which will report one item matching the new test

file (rather than the earlier example electronic devices files). The number of matches is on

about the eighth line, and looks like this:

<result name="response" numFound=" 1" start="0">

After that, the Solr raw interface will show the contents of the indexed file:

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 6

Notes

You must use a browser than can render XML, such as Firefox or Internet Explorer

or Opera (but not Safari).

The field label arr indicates a multiValued field.

Part 3: Using Solr to Index Plain Text Files

Integrated with Solr version 1.4, Solr Cell (also known as the ExtractingRequestHandler)

provides access to a wide range of file formats using the integrated Apache Tika toolkit,

including untagged plain text files. The test file for this tutorial is lu-example-2.txt . It has

no tags or metadata within it, just words and line breaks.

Note

The Apache Tika project reports that extracting the words from plain text files is

surprisingly complex, because there is so little information on the language and

alphabet used. The text could be in Roman (Western European), Indic, Chinese, or

any other character set. Knowing this is important for indexing, in particular for

defining the rules of word breaks, which is Tokenization.

Invoking Solr Cell
To trigger the Solr Cell text file processing (as opposed to the Solr XML processing), add

extract in the URL path in the POST command: /solr/update/extract .

This example includes three new things: the extract path term, a document ID (because

this file doesn't have an ID tag), and an inline commit parameter, to send the update to the

index.

 cURL 'http://localhost:8983/solr/update/extract?li teral.id=exid2&commit=true' -
F "myfile=@lu-example-2.txt"

The response status of 0 signals success. Your cURL command has added the contents of

lu-example-2.txt to the index.

When running the query http://localhost:8983/solr/select?q=gettysburg in the index, both

documents are matched.

<result name="response" numFound=" 2" start= "0">

Unlike the indexed XML document, with this text document, there are only two fields

(content-type and id) that are visible in the search result. The text content, even the word

"Gettysburg," all seems to be missing.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 7

How can Solr match words in a file using text that doesn’t seem to be there? It's because

Solr’s default schema.xml is set to index for searching, but not store for viewing. In other

words, Solr isn’t preset to store for your viewing the parts of the documents with no HTML

tags or other labels. For plain text files, that's everything, so the next section is about

changing that behavior.

Parameters for more fields
Solr Cell provides ways to control the indexing without having to change source code.

Parameters in the POST message set the option to save information about the documents in

appropriate fields, and then to grab the text itself and save it in a field. The metadata can be

extracted without the file contents or with the contents.

Solr Cell external metadata
When Solr Cell reads a document for indexing, it has some information about the file, such

as the name and size. This is metadata (information about information), and can be very

valuable for search and results pages. Although these fields are not in the schema.xml file,

Solr is very flexible, and can put them in dynamic fields that can be searched and displayed.

The operative parameter is uprefix=attr_ ; when added to the POST command, it will save

the file name, file size (in bytes), content type (usually text/plain), and sometimes the

content encoding and language.

 cURL
'http://localhost:8983/solr/update/extract?literal. id=exid2&uprefix=attr_&commit
=true' -F "myfile=@lu-example-2.txt"

Here is an example of the same file, indexed with the uprefix=attr_ parameter:

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 8

Mapping document content
Once the metadata is extracted, Solr Cell can be configured to grab the text at well. The

fmap.content=body parameter stores the file content in the body field, where it can be

searched and displayed.

Note

Using the fmap parameter without uprefix will not work. To see the body text, the

schema.xml must have a body field, as described in the Install section above.

Here's an example of an index command with both attribute and content mapping:

 cURL
'http://localhost:8983/solr/update/extract?literal. id=exid3&uprefix=attr_&fmap.c
ontent=body&commit=true' -F "txtfile=@lu-example-3. txt"

Searching the Solr index <http://localhost:8983/solr/select?q=gettysburg> will now

display the all three example files. For lu-example-3.txt , it shows the body text in the

body field and metadata in various fields.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 9

Part 4: Indexing All Text Files in a Directory

The Solr Startup Tutorial exampledoc directory contains a post.sh file, which is a shell script

that uses cURL to send files to the default Solr installation for indexing. This version uses

the cURL commands above to send .txt (as opposed to .xml) files to Solr for indexing. The

file post-text.sh should be in the ../example/example-text-html/ directory with the

test files.

Shell script for indexing all text files
• Set the permissions: chmod +x post-text.sh

• Invoke the script: ./post-text.sh

You should see the <response> with status 0 and the other lines after each item: if you do

not, check each line for exact punctuation and try again.

When you go back to search on Solr, http://localhost:8983/solr/select?q=gettysburg, you

will find five text documents and one XML document.

Different doc IDs: adds aan additional document
Note that the results include two different copies of the first example, both containing “Four

score and seven years ago”, because the script loop sent all text files with the generated exid

number, while the XML example contains an id starting with exidx.

Identical doc IDs - replaces a document
The second example text file had some text that was indexed but not stored as a text block

when we first indexed it. Now it has content in the body field, because the script loop sent it

with the same ID (and the new parameters), so Solr updated the copy that was already in

the index, using the Doc ID as the definitive identifier.

For more information on IDs, see the LucidWorks Certified Distribution Reference Guide on

Unique Key.

More robust methods of indexing files
Sending indexing and other commands to Solr via cURL is an easy way to try new things

and share ideas, but cURL is not built to be a production-grade facility. And because Solr's

HTTP API is so straightforward, there are many ways to call Solr programmatically. There

are libraries for Solr in nearly every language, including Java, Ruby, PHP, JSON, C#, and Perl,

among others. Many content management sytems (CMS), publishing and social media

systems have Solr modules, such as Ruby on Rails, Django, Plone, TYPO3, and Drupal; it is

also used in cloud computing environments such as Amazon Web Services and Google

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 10

Code. For more information, check the Solr wiki and the LucidWorks Solr client API Lineup

in the LucidWorks Certified Distribution Reference Guide.

Part 5: Indexing HTML Files

This tutorial uses the same cURL commands and shell scripts for HTML as for text. Solr Cell

and Tika already extract many HTML tags such as title and date modified .

Note

 All the work described above on text files also applies to HTML files, so if you've

skipped to here, please go back and read the first sections.

 cURLSimplest HTML indexing
The first example will index an HTML file with a quote from the Universal Declaration of

Human Rights:

cURL 'http://localhost:8983/solr/update/extract?lit eral.id=exid6&commit=true' -F
"myfile=@lu-example-6.html"

Doing a query for "universal", http://localhost:8983/solr/select?q=universal , shows us

that Solr Cell created the metadata fields title , and links , because they are standard

HTML constructs.

Again, by default, the body text is indexed but not stored; and, changing that is just as easy

as changing it with the text files.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 11

Storing more metadata from HTML
As in the text file section of this tutorial, this example uses the uprefix parameter attr_

to mark those fields that Solr Cell automatically creates but which are not in the

schema.xml . This is not a standard, but it's a convention that's widely used.

cURL
'http://localhost:8983/solr/update/extract?literal. id=exid7&uprefix=attr_&commit
=true' -F "myfile=@lu-example-7.html"

Searching for "universal" now finds both HTML documents. While exid6 has very little

stored data, exid7 has the internal metadata of the document, including the title, author,

and comments.

Note

Apache Tika uses several methods to identify file formats. These include

extensions, like .txt or .html, MIME types such as text/plain or application/pdf,

and known file format header patterns. It's always best to have your source

files use these labels, rather than relying on Tika to guess.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 12

Storing body text in a viewable field
As in the text file, indexing Example 8 uses the fmap parameter to set the text from within

the <body> field of the HTML document to the body field which is in this example schema,

so it will be both searchable and stored.

cURL -f
'http://localhost:8983/solr/update/extract?uprefix= attr_&fmap.content=body&commi
t=true&literal.id=exid8' -F "myfile=@lu-example-8.h tml"

Part 6: Using Solr indexing for Remote HTML Files

Using cURL to download and index remote files
The cURL utility is a fine way to download a file served by a Web server, which in this

tutorial we’ll call a remote file. With the -O flag (capital letter O, not the digit zero), cURL

will save a copy of the file with the same name into the current working directory. If there's

a file with that name already, it will be over-written, so be careful.

cURL -O http://www.lucidimagination.com/download/th tutorial/lu-example-9.html

Note

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 13

If web access is unavailable, there's a copy of the lu-example-9.html file in

the remote subdirectory in the zip file.

If you view the files in the local examples-text-html directory, there will be a

lu-example-9.html file. The next step is to send it to Solr, which will use Solr Cell to index

it.

cURL
"http://localhost:8983/solr/update/extract?literal. id=exid9&uprefix=attr_&fmap.c
ontent=body&commit=true" -F "exid9=@lu-example-9.ht ml"

This will index and store all the text in the file, including the body, comments, and

description.

File streaming for indexing remote documents
Solr also supports a file streaming protocol, sending the remote document URL to be

indexed. For more information, see the ExtractingRequestHandler and ContentStream

pages in the LucidWorks Certified Distribution Reference Guide for Solr, or the Solr wiki. Note

that enabling remote streaming may create an access control security issue: for more

information, see the Security page on the wiki.

Spidering tools
This tutorial doesn't cover the step of adding a spider (also known as a crawler or robot) to

the indexing process. Spiders are programs that open web pages and follow links on the

pages, to index a web site or an intranet server. This is how horizontal consumer web

search providers such as Google, Ask, and Bing find so many pages.

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 14

Solr doesn't have an integrated spider, but works well with another Apache Lucene open

source project, the Nutch crawler. There's a very helpful post on Lucid Imagination's site,

Using Nutch with Solr, which explains further how this works.

Alternatives include Heritrix from the Internet Archive, JSpider, WebLech, Spider on Rails,

and OpenWebSpider.

Conclusion and Additional Resources

Now that you’ve had the opportunity to try Solr on HTML content, the opportunities to

build a search application with it are as diverse and broad as the content you need to

search! Here are some resources you will find useful in building your own search

applications.

Configuring the ExtractingRequestHandler in Chapter 6 of the LucidWorks for Solr

Certified Distribution Reference Guide

http://www.lucidimagination.com/Downloads/LucidWorks-for-Solr/Reference-Guide

Solr Wiki: Extracting Request Handler (Solr Cell)

http://wiki.apache.org/solr/ExtractingRequestHandler

Tika http://lucene.apache.org/tika/

Content Extraction with Tika, by Sami Siren:

http://www.lucidimagination.com/Community/Hear-from-the-Experts/Articles/Content-

Extraction-Tika

Optimizing Findability in Lucene and Solr, by Grant Ingersoll:

http://www.lucidimagination.com/Community/Hear-from-the-

Experts/Articles/Optimizing-Findability-Lucene-and-Solr

Indexing Text and HTML Files with Solr
A Lucid Imagination Tutorial • February 2010 Page 15

About Lucid Imagination
Mission critical enterprise search applications in e-commerce, government, research,

media, telecommunications, Web 2.0, and many more use Apache Lucene/Solr to ensure

end users can find valuable, accurate information quickly and efficiently across the

enterprise. Lucid Imagination complements the strengths of this technology with a

foundation of commercial-grade software and services with unmatched expertise. Our

software and services solutions help organizations optimize performance and achieve high-

quality search results with their Lucene/Solr applications. Lucid Imagination customers

include AT&T, Nike, Sears, Ford, Verizon, The Guardian, Elsevier, The Motley Fool, Cisco,

Macy's and Zappos.

Lucid Imagination is here to help you meet the most demanding search application

requirements. Our free LucidWorks Certified Distributions are based on these most

popular open source search products, including free documentation. And with our

industry-leading services, you can get the support, training, value added software, and

high-level consulting and search expertise you need to create your enterprise-class search

application with Lucene and Solr.

For more information on how Lucid Imagination can help search application developers,

employees, customers, and partners find the information they need, please visit

http://www.lucidimagination.com to access blog posts, articles, and reviews of dozens of

successful implementations. Please e-mail specific questions to:

• Support and Service: support@lucidimagination.com

• Sales and Commercial: sales@lucidimagination.com

• Consulting: consulting@lucidimagination.com

• Or call: 1.650.353.4057

About the Author
Avi Rappoport really likes good search, and Solr is really good. She is the founder of Search

Tools Consulting, which has given her the opportunity to work with site, portal, intranet

and Enterprise search engines since 1998. She also speaks at search conferences, writes on

search-related topics for InfoToday and other publishers, co-manages the LinkedIn

Enterprise Search Engine Professionals group, and is the editor of SearchTools.com.

Contact her at consult [at] searchtools . com or via the searchtools.com web site.

